
Description of all ensemble components in the 2015/2016
Delphi-Stat forecasting system

Ensemble components

Delphi-Stat incorporated 10 individual forecasting methods in the 2015/2016
season based on diverse methodologies to forecast the targets of interest Zt

conditioned on the �nalized wILI values up to time t, Y1..t. When producing
prospective forecasts, we do not have access to the �nalized values Y1..t, but
rather the t-th report for the current season, W t

1..t; we discuss a method for
distributional estimates of Y1..t based on W t

1..t in the main text. All methods
produce distributional forecasts for the targets of interest; their point predictions
are the medians of the corresponding distributional forecasts. Most methods,
rather than directly producing forecasts for the targets, �rst estimate the dis-
tribution of the entire wILI trajectory Y1..T based on the available data, then
calculates the corresponding distribution over the targets. (Since the data are
at a weekly resolution, the number of wILI values in the current season, T , is
either 52 or 53; we present the methods here as if all seasons were of the same
length T , omitting all details dealing with mismatches between the length of a
training season and the length of a test season.)

Methods based on delta density

Markovian delta density

Described in the main text.

Extended delta density

Described in the main text.

Methods based on empirical distribution of curves

Another class of methods are based on using and expanding the empirical dis-
tribution of wILI trajectories.

Empirical distribution of wILI trajectories for future times

Consider all Y s
t+1..T , s ∈ {1 . . S}, equally likely to reoccur. Observations from

the current season are used for times up to t.

Empirical Bayes procedure on wILI trajectories

Model Y1..T as some underlying curve, F1..T , plus i.i.d. Gaussian observational
noise. Estimate F s

1..T and a noise level for each s ∈ {1 . . S} using a trend �l-
tering procedure. Build a distribution for F1..T and the noise level using these
estimates, plus a probability distribution over ways to shift and scale these

1



curves to produce a wider range of possibilities for Y1..T . The resulting distri-
bution describes our prior beliefs about the distribution of Y1..T before seeing
any observations from the current season; calculate the corresponding poste-
rior distribution, Y1..T | Y1..t, describing our beliefs after seeing the available
observations, using importance sampling techniques [SAA1].

Implements the empirical Bayes method as described in [21], with a few
modi�cations:

• Only the time-shift and wILI-scale transformations are used.

• The time-shift is a �local� transformation: rather than having a distri-
bution of peak weeks determine the shift amount, we directly choose a
distribution over shift amounts. Speci�cally, we use a discrete uniform
distribution over integers centered at zero, width equal (ignoring round-
ing) to twice the bin width of a histogram of the historical peak weeks
using Sturges' rule.

• The wILI-scale is a �local� transformation: rather than having a distri-
bution of peak heights determine the scale amount, we directly choose a
distribution over scale amounts. Speci�cally, we use a log-uniform dis-
tribution centered at 0 in the log-scale with log-scale width equal tot
twice the bin width of a histogram of the logarithms of the historical peak
heights, using Sturges' rule. Note that this behavior can signi�cantly bias
the mean of the prior for the peak heights, but does not signi�cantly a�ect
the median of the prior for the peak heights. Another di�erence from the
scaling transformation in the paper is that, instead of scaling the wILI
trajectory above and about the CDC baseline, we scale from 0, and also
multiply the noise associated with each observation based on how much it
was scaled.

• Instead of randomly mixing and matching smooth curve shapes and noise
levels, these two parameters are linked together: a given noise level esti-
mate is always paired with the corresponding smoothed curve.

• We add a �reasonable future� term to the posterior log-likelihood (given
observations in past weeks) of each proposed trajectory, proportional to
the average log-likelihood of the 3 most similar historical curves in future
weeks.

• We condition on a maximum of 5 observations from the current season; if
more than 5 observations are available for the current season, we use only
the most recent 5.

• We use the glmgen package [SAA2] to rapidly perform trend �ltering for
smoothing past seasons' trajectories.

We form two other versions of the empirical Bayes forecaster by using subsets
of these changes and other parameter settings; these variants were used in the
2016/2017 ensemble but not the 2015/2016 ensemble.
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Basis regression approach

Estimates the mean curve EY1..T with elastic net regression from a collection of
basis functions to a trajectory of �pseudo-observations� Ỹ1..T which is the con-
catenation of (a) the available observations Y1..t, and (b) the pointwise mean of
Y s
t+1..T for s ∈ {1 . . S}. We chose a B-spline basis, which produces a variation

on smoothing spline estimation of EY1..T . The glmnet package [SAA3] was used
to perform the elastic net regression, with evenly weighed L1 and L2 regular-
ization (the default setting, α = 0.5), and to automatically select the overall
regression penalty coe�cient λ using random 5-fold cross-validation on weeks
of the current season, seeing how well the smoothed estimate for EY1..T is able
to predict left-out pseudo-observations from Ỹ1..T .

Basis regression with degenerate distributional forecast

Forecasts that Y1..T will be equal to the basis regression estimate for EY1..T with
probability 1. There is a small amount of randomness in the basis regression
estimation procedure itself arising from the default method for selecting λ, so
we actually take a sample by calling the procedure many times, forming a very
narrow distribution.

Basis regression with residual density distributional forecast

Constructs a distributional forecast for Y1..T by applying the residual density
method with X1..T equal to the basis regression estimate for EY1..T and other
settings the same as in the Markovian delta density method.

No-trajectory approaches

These approaches form a forecast for Zt from an estimate of Y1..t without �rst
constructing a forecast for the entire trajectory Y1..T .

Empirical distribution of target values

Consider all Y s
1..T , s ∈ {1 . . S}, equally likely to reoccur, ignoring and overriding

the available observations from the current season (Y1..t). For each target, the
distributional forecast is its empirical distribution, and the point prediction is
the corresponding median.

Direct target forecasts with kernel smoothing

Uses the kernel smoothing method used in the delta density method to estimate
the distribution of Zt conditioned only on (an estimate of) Yt.

Direct target forecasts with generalized additive model

Uses a generalized additive model to predict the expected value of a subset of
the targets, and assumes a normal distribution for the residuals when making
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distributional forecasts. Provided by Shannon Gallagher. This method was
used in the 2015/2016 ensemble, but not the 2016/2017 ensemble nor the cross-
validation analysis.

Uniform distribution

Outputs the same probability for each bin, regardless of the input data. The
corresponding point predictions are excluded from the ensemble.
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